M Wordfence

Common WordPress Vulnerabilities and Prevention
Through Secure Coding Best Practices

Chloe Chamberland
Wordfence Threat Analyst
Masters of Science in Cybersecurity and Information Assurance

OSCP, OSWE, OSWP, Security+, CySA+, PenTest+, CASP+, C|EH, E|CSA, CHFI, eWPT, SSCP,
Associate of (ISC)2, AWS CCP, AWS SSA, AWS Security Specialty

Publication Date: July 13, 2021
© 20271 WORDFENCE ALL RIGHTS RESERVED

WORDFENCE.COM

Table of Contents

. Introduction)
II. Missing Capability Checks 6
Introducing a Weakness 6
Identifying Missing Capability Checks 6
Adding Capability Checks 9
Additional Note 10
Example from WP Database Reset Plugin <= 3.1 - Unauthenticated Database Reset
Vulnerability (CVE-2020-7048) 11
Ill. Missing Cross-Site Request Forgery Protection. 13
Opening a Door to Forged Requests 13
Identifying a Lack of Cross-Site Request Forgery Protection 13
Adding CSRF Protection 14
Additional Note 14
Example from Real-Time Find and Replace plugin <= 3.9 - Cross-Site Request Forgery
to Cross-Site Scripting (CVE-2020-13641) 16
IV. Missing File Upload Validation 18
An Open Door to Remote Code Execution 18
Finding Unrestricted File Uploads 19
Properly Validating File Uploads 20
Example from Quiz and Survey Master Plugin < =7.0.0 - Unauthenticated Arbitrary File
Upload (CVE-2020-35949) 22
V. Deserialization of User-Supplied Input 24
The Magic of PHP Object Injection Vulnerabilities 24
Discovering Deserialization Weaknesses 25
Preventing Deserialization Vulnerabilities 26
Example from Facebook for WordPress Plugin <=2.2.2 - Unauthenticated PHP Object
Injection (CVE-2021-24217) 27
VI. Lack of Sanitization and Escaping on User-Supplied Inputs 29
Cross-Site Scripting Vulnerabilities Open Doors to Remote Code Execution 29
Discovering Cross-Site Scripting Vulnerabilities 30
The unfiltered_html capability 32
Sanitizing Inputs and Escaping Outputs to Prevent Cross-Site Scripting Vulnerabilities
and Properly Format Data 32

2 WORDFENCE.COM

Example from 301 Redirects — Easy Redirect Manager Plugin <= 2.4.0 - Stored

Cross-Site Scripting Vulnerability (CVE-2019-19915) 35
VII. Unprepared SQL Queries 38
SQL Injection Can Lead to Sensitive Information Theft 39
Where are SQL Injection vulnerabilities found? 39
Securely Performing SQL Queries 41
Example from Tutor LMS: Authenticated <= 1.8.2 - SQL Injection (CVE-2021-24183) 42
VIII. Usage of Certain PHP Functions with User-Supplied Input 44
The Impact of Code & Command Injection 44
Finding Remote Command/Code Injection Weaknesses 45
How can this be corrected? 45
Example from Social Warfare Plugin <= 3.5.2 Unauthenticated Remote Command
Execution 47
IX. Sensitive Information Disclosure 48
Uncovering Sensitive Information Disclosure Vulnerabilities 48
Preventing Sensitive Information Disclosure 49
Example from WPCentral Plugin <= 1.5.0 - Connection Key Disclosure
(CVE-2020-9043) 50
X. File Access/Usage Weaknesses 52
Accessing, Including, and Modifying Files Can Do a Lot of Harm 52
Discovering File Access/Usage Weaknesses 53
Securely Performing File Operations 54
Example from Quiz and Survey Master Plugin <= 7.0.0 - Arbitrary File
Deletion(CVE-2020-35951) 55
XI. Additional Security Flaws 57
Arbitrary Options and user_meta Update Vulnerabilities 57
Open Redirection Vulnerabilities 58
Conclusion 59

3 WORDFENCE.COM

I. Introduction

WordPress plugins and themes are developed by many different third-party developers
with diverse coding techniques and backgrounds. Any developer can publish a plugin or
theme to the WordPress repository that any user can install on their WordPress site. This
diversity is part of what makes WordPress so attractive and easy to use. However, this
same diversity increases the probability of introducing vulnerabilities on WordPress sites.
WordPress currently powers over 42% of the internet at the time of publication and as
such, it is important that we maintain a secure ecosystem.

WordPress users often have no choice but to trust that plugin and theme developers have
used secure coding practices and actively maintain their plugins. Unfortunately, the
Wordfence Threat Intelligence Team among many other independent security
researchers routinely find plugins and themes with vulnerabilities. Some of these
vulnerabilities are simple, accidentally introduced celebrity bugs. Other vulnerabilities,
however, are introduced by insecure coding practices and methodologies that could have
easily been avoided.

Of course, we are all human and wonderfully imperfect, and no matter how experienced we
are as developers, we can make mistakes. Security flaws will always be a part of any code.
However, our goal in presenting this white paper is to encourage and inform so that secure
code becomes the norm in the WordPress space.

This guide was created to analyze the most common and significant security-related
coding flaws found in WordPress plugins and themes, in addition to providing
recommendations as to how to correct these coding flaws. This information is based on
years of experience with WordPress related vulnerabilities that our Threat Intelligence
Team has.

4 WORDFENCE.COM

II. Missing Capability Checks

One of the most common flaws that we see when auditing the security of WordPress
plugins and themes is a lack of appropriate capability checks on functions and actions. In
fact, missing capability checks lead to the vast majority of severe vulnerabilities in the
WordPress ecosystem.

Most vulnerabilities will start with a missing capability check and then escalate into an
additional security issue like Stored Cross-Site Scripting or arbitrary file upload. Therefore,
the most critical security flaws in the WordPress ecosystem are often due to a missing
capability check in conjunction with another flaw.

Introducing a Weakness

Capability checks verify that a user has the appropriate permission, or capability, to
perform an action, often referred to as authorization. When a function does not have a
capability check, then the function is not checking to see if the user performing the action
has the appropriate authorization to execute the function. Therefore, anyone able to call
that function or action, even those without the intended authorization, can abuse its
functionality.

These functions can range from updating a plugin’s settings to uploading files, actions
that should only be allowed by a site administrator in most cases. It's important that
plugins and themes have the appropriate capability checks throughout so that attackers
without the appropriate authorization can't perform actions like updating a plugin’s
settings with malicious JavaScript to take over a WordPress site.

A missing capability check leads to a weakness classified by MITRE as “CWE-862:
Missing Authorization” which means that the software is missing the appropriate
authorization checks and unauthorized parties have the ability to perform some
action. This would also be identified by the OWASP's Top Ten as A5:2077-Broken
Access Control?.

Identifying Missing Capability Checks

Look for action hooks in WordPress and verify that they have the appropriate capability
checks on their respective function. Hooks in WordPress are a way for code to trigger at

" https://cwe mitre.org/data/definitions/862 html
2 https://owasp.org/www-project-top-ten/2017/A5_2017-Broken_Access_Control

5 WORDFENCE.COM

https://owasp.org/www-project-top-ten/2017/A5_2017-Broken_Access_Control
https://cwe.mitre.org/data/definitions/862.html

certain times during a WordPress site's code execution flow. Hooks are a native
WordPress feature, and there are a significant number of different hooks that can be used
by developers. For a complete guide on WordPress hooks, we recommend reviewing the
WordPress Plugins handbook ?

Action hooks are used in the codebase of WordPress plugins, themes, and core like so:
add action('admin init', 'some function here');

On the left you have the hook that is being registered and on the right you have the
corresponding function that will execute when the requirements for the hook is met.

The following WordPress hooks are among the most common ones we see associated
with insecure access control weaknesses, however, there are several additional
WordPress hooks that can be tied to plugin or theme functions containing authorization
weaknesses.

wp_ ajax 4

This hook is used to create AJAX actions for authenticated users and allows code to be
run without requiring any pages to be reloaded. This hook requires the user to be
authenticated to a WordPress site even though it does not perform any capability checks.
This means that any user logged in, even those with just a subscriber or customer role,
can trigger an AJAX action if access is not properly secured. As such, every wp ajax
action needs to have its own capability checks so that only users with the appropriate
permission can perform the action. For example, an AJAX action used to update settings
for a plugin should be restricted to those with the manage options capability. The only
time setting updates would not be restricted would be in rare instances where a site's
subscriber might need to edit those settings.

The Wordfence Threat Intelligence team has found various instances where wp _ajax
was used without appropriate capability checks. In fact, this accounted for a vast majority
of vulnerabilities found by the Wordfence Threat Intelligence team in 2020.

admin init”®

This hook is used to run functions upon loading the WordPress administrative dashboard.
Despite having “admin” in the name, it does not perform any checks to verify that the
function is being triggered by an administrator, meaning that capability checks need to be
added any time that admin init is used. This hook will initialize the corresponding

% https://developer.wordpress.org/plugins/hooks/
* https://developer.wordpress.org/reference/hooks/wp_ajax_action/
® https://developer.wordpress.org/reference/hooks/admin_init/

6 WORDFENCE.COM

https://developer.wordpress.org/reference/hooks/admin_init/
https://developer.wordpress.org/reference/hooks/wp_ajax_action/
https://developer.wordpress.org/plugins/hooks/

function while a user is accessing the admin-ajax.php and admin-post.php
endpoints which can be accessed by unauthenticated users. This means that
unauthenticated users can trigger any functions hooked to an admin init action, so
these hooks require appropriate capability checks.

wp ajax nopriv’

This hook is an extension of the wp_ajax hook and is used to create AJAX actions for
users that are not authenticated. Corresponding functions should require authentication
and certain capabilities to execute the AJAX action, however, often there is no capability
check present. It is important to ensure that there are no wp ajax nopriv actions for
functions that should require authentication or capability checks.

admin post’

This hook is used to fire actions on usage of the /wp-admin/admin-post.php
endpoint. It can be used to update settings and upload files, amongst other things. Just
like with the admin init hook, it does not perform any checks on its own to verify that
the function is being triggered by an administrator. Rather, it only detects being triggered
from the admin-post .php endpoint from an authenticated session. This means that
any authenticated user, including subscribers, can trigger functions hooked to an
admin post action. Therefore, all of these endpoints require an appropriate capability
check.

admin post nopriv®

This hook is an extension of the previous hook and is used to create an admin-post
action for users that are not authenticated. Just like with the nopriv AJAX actions, the
issue frequently seen here is that functions are hooked to nopriv actions when they
should require authentication and certain capabilities to execute. It is important to ensure
that there are no admin_post nopriv actions for functions that should require
authentication and certain capabilities.

admin action’

This hook is used to fire actions in the admin dashboard, and again does not perform any
checks to validate if a user is an administrative user, however, it does validate that the

® https://developer.wordpress.org/reference/hooks/wp_ajax_nopriv_action/

" https://developer.wordpress.org/reference/hooks/admin_post_action/

8 https://developer.wordpress.org/reference/hooks/admin_post nopriv_action/
° https:/developer.wordpress.org/reference/hooks/admin_action_action/

7 WORDFENCE.COM

https://developer.wordpress.org/reference/hooks/admin_action_action/
https://developer.wordpress.org/reference/hooks/admin_post_nopriv_action/
https://developer.wordpress.org/reference/hooks/admin_post_action/
https://developer.wordpress.org/reference/hooks/wp_ajax_nopriv_action/

request is coming from an authenticated session. It's important to make sure that any
uses of admin action have a corresponding capability check on the function.

profile update'’&personal options update'

These two hooks are used during WordPress user profile updates. Validate that these
hooks do not perform any role or user meta updates without the appropriate capability
checks so that lower-privileged users cannot perform privilege escalation while updating
their profiles.

In addition to hooks with missing capability checks on their corresponding functions, all
REST-API endpoints should be validated for appropriate protections. When looking for
improperly secured REST-API endpoints, look for any instance of
register rest route and verify that they have a permissions callback'” on
the route.

As of WordPress version 5.5, all REST routes require the use of

permissions callback, otherwisea doing it wrong notice will be returned.
However, developers have the option to set the permissions callback to
__return true in cases where they would like the REST endpoint to be publicly
accessible. For that reason, we recommend looking for the use of

permissions callback when validating if a rest route has the appropriate capability
check, though the capability check can exist in other places like the REST-API function
itself.

Adding Capability Checks

Resolving flaws created by inadequate capability checks is simple by using the
current user can ()"’ function. This function checks for the appropriate capability to
perform an action on user-triggered functions.

If the developer would like a site’'s administrator to be the only user capable of performing
an action, then they should make the capability check look for the manage options
capability. The manage options check is reserved for administrators. For a complete
guide on WordPress roles and user capabilities, please review the WordPress support

10 https://developer.wordpress.org/reference/hooks/profile_update/
" https://developer.wordpress.org/reference/hooks/personal_options_update/

2 https://developer.wordpress.org/rest-api/extending-the-rest-api/adding-custom-endpoints/#permissions-callback

"% https://developer.wordpress.org/reference/functions/current_user_can/

8 WORDFENCE.COM

https://developer.wordpress.org/reference/functions/current_user_can/
https://developer.wordpress.org/rest-api/extending-the-rest-api/adding-custom-endpoints/#permissions-callback
https://developer.wordpress.org/reference/hooks/personal_options_update/
https://developer.wordpress.org/reference/hooks/profile_update/

article™. This guide can be used as a resource when determining which capability is the
most appropriate to check for on individual WordPress functions.

When it comes to adding the appropriate capability checks to REST-API routes, use the
permissions_callback function to validate that the user can access the specified
REST-API endpoint. Just like with the current user can () function, you will need to
specify an appropriate capability to check.

Additional Note

Just as important as it is to validate that all functions have capability checks, it is equally
important to verify that the checks in use are appropropriate for the intended use.

For example, there have been numerous cases where functions like 1s_admin have been
erroneously used for capability checks, leading to access control security flaws™. The

is admin function only validates that a request is coming from within the WordPress
admin dashboard, it does not verify that the request is coming from an administrator.
Therefore, any logged in user can trigger any functions or actions that only have
is_admin in use for access control. Therefore, it is highly recommended not to use

is admin inan attempt to add access control.

In addition, there have been cases where the capability checks used by developers have
made it possible for unauthorized users to perform restricted actions when the
appropriate capability has not been validated.'®

This highlights the importance of not only adding a capability check, but to continuously
be mindful of whether or not the capability check being used is appropriate for the action
provided to users.

4 hitps: //wordoress org/support/article/roles- and caoab|lmes/

9 WORDFENCE.COM

https://www.wordfence.com/blog/2021/03/medium-severity-vulnerability-patched-in-user-profile-picture-plugin/
https://www.wordfence.com/blog/2019/12/critical-vulnerability-patched-in-301-redirects-easy-redirect-manager/
https://wordpress.org/support/article/roles-and-capabilities/

Example from WP Database Reset Plugin <= 3.1 - Unauthenticated
Database Reset Vulnerability (CVE-2020-7048)"’

The following is an example of an insecure access control vulnerability discovered in the
WP Database Reset plugin. Below is the admin init action that hooked to the reset
function that triggered the reset of a WordPress database. This action also included
resetting all users.

run() {

add_action(

Insecure Code Prior to Patch

The reset () function hooked from the admin init action was vulnerable because it
had no capability check to validate that a database reset was being triggered by an
administrator. Therefore, it was possible for unauthenticated users to trigger the reset
function.

reset(
(in_array(

->validate_selected(
->set_backup()
->peinstall()
->restore_backup()

validate_selected(
() && is_array(
= array_flip(

Exception(__(

https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-7048
https://www.wordfence.com/blog/2020/01/easily-exploitable-vulnerabilities-patched-in-wp-database-reset-plugin/

Corrected and Secured Code

This vulnerability was corrected when the reset () function hooked from the
admin init action implemented access control using

current user can('administrator') to validate that the user making the request
is an administrator, in addition to a nonce check for CSRF protection.

reset(

(wp_verify_nonce(@) && current_user_can(

(in_array(

->

->validate_selected(
->set_backup()
->reinstall()

->restore_backup()

{

Exception(__(

ITII. Missing Cross-Site Request Forgery Protection.

A Cross-Site Request Forgery (CSRF) attack starts with a malicious actor crafting a
legitimate request to a target site. If they can successfully trick a victim into performing
an action, such as clicking on a link while the victim is authenticated to the target site,
then the attacker can perform actions on behalf of that authenticated user. This means
that an attacker can perform an action that appears to be coming from a legitimate
authenticated user session, however, the request sent to the website is completely forged
by the attacker.

Cross-Site Request Forgery protection requires the use of nonces, which means “number
used once.” In WordPress, nonces'® work slightly differently. Instead of only being used
once, they are valid for a short period of time or until a user's session has ended;
whichever comes first.

The Wordfence Threat Intelligence team frequently finds that WordPress functions miss
the appropriate nonce protection on functions. These flaws are especially common in
conjunction with flaws that are a result of inadequate authorization.

Opening a Door to Forged Requests

Verifying that WordPress plugins and themes have the appropriate Cross-Site Request
Forgery protection ensures attackers cannot trick WordPress site owners into performing
unwanted actions.

Because attacks using Cross-Site Request Forgery vulnerabilities appear to be coming
from legitimate administrator sessions, it is often not possible for web application
firewalls (WAFs) to protect websites from these types of attacks. As such, it is crucially
important that plugin and theme developers provide adequate CSRF protection.

Missing nonce protections leads to a weakness classified by MITRE as “CWE-352:
Cross-Site Request Forgery (CSRF)”"® which means that the software is missing the
appropriate checks to verify the integrity of who submitted a request.

Identifying a Lack of Cross-Site Request Forgery Protection

As with inadequate access control vulnerabilities, look for WordPress hooks and validate
that each corresponding function has the appropriate nonce validation functions in use.

'8 https://codex.wordpress.org/WordPress Nonces
19 https://cwe mitre org/data/definitions/352.html

12 WORDFENCE.COM

https://cwe.mitre.org/data/definitions/352.html
https://codex.wordpress.org/WordPress_Nonces

The most common WordPress action hooks we recommend looking for are the same as
previously discussed in the capability check section.

admin init

wp_ ajax

Wp_ajax nopriv
admin post
admin post nopriv

admin action

admin menu

If the hooked function uses check ajax referrer’’, check admin referrer®’, or
wp verify nonce® then it does have a nonce check and it should be protected
against CSRF vulnerabilities.

However, it is possible that nonce validation can be improperly implemented allowing for
CSRF protection bypasses®, so it is important to validate that the nonce check is not
merely conditional on the nonce being present. The nonce should always be checked
whether present in the request or not.

Adding CSRF Protection

Adding CSRF protection is relatively simple. To add CSRF protection, developers will need
to create the nonce as part of the page or form using wp_create nonce. Then, for the
nonce validation, one of the following functions, check ajax_referrer,

check admin referrer,or wp verify nonce, needs to be added to the function
that is being protected. There should be a conditional that terminates the execution of the
rest of the function if a nonce check fails or if the nonce is not present in order to provide
CSRF protection.

Additional Note

An additional flaw we often see is the use of WordPress nonces as a means of
authorization instead of using the appropriate capability check. This is not advised. We
recommend using WordPress nonces in conjunction with the appropriate capability

2 https://developer.wordpress.org/reference/functions/check_ajax_referer/

2 https://developer.wordpress.org/reference/functions/check_admin_referer/
22 https://developer.wordpress.org/reference/functions/wp_verify_nonce/

2 https://blog.nintechnet.com/25-wordpress-plugins-vulnerable-to-csrf-attacks/

13 WORDFENCE.COM

https://blog.nintechnet.com/25-wordpress-plugins-vulnerable-to-csrf-attacks/
https://developer.wordpress.org/reference/functions/wp_verify_nonce/
https://developer.wordpress.org/reference/functions/check_admin_referer/
https://developer.wordpress.org/reference/functions/check_ajax_referer/

check. Nonces can be compromised, and therefore, should always be assumed as such
and never relied upon for authorization.

For example, the Wordfence Threat Intelligence Team discovered an unauthenticated
arbitrary nonce generation present in Redirection for Contact Form 7% that made it
possible for any unauthenticated attacker to generate an arbitrary valid nonce. That valid
nonce could then be used to bypass any nonce checks that were being used as capability
checks in other plugins. This would have made it possible for an attacker to trigger any
functions that only used a nonce check as a means of access control.

14 WORDFENCE.COM

https://www.wordfence.com/blog/2021/04/severe-vulnerabilities-patched-in-redirection-for-contact-form-7-plugin/

Example from Real-Time Find and Replace plugin <= 3.9 - Cross-Site
Request Forgery to Cross-Site Scripting (CVE-2020-13641)%°

This example of a Cross-Site Request Forgery vulnerability escalated to a more severe
Stored Cross-Site Scripting vulnerability within the Real-Time Find and Replace plugin.
The far add pages function shown below added the page used for the plugin and
hooked to the far options page function used to control the plugin's find and replace
functionality.

0

= add_submenu_page(

add_action(

Insecure Code Prior to Patch

The far options page function hooked from the menu page action has a nonce
check in place, while the submenu page validates that a user has the
activate plugins capability in order to trigger the function. However, the function is
missing a nonce check to provide CSRF protection.
far_options_page(){
(isset([1) {
= stripslashes_deep(

(is_array([IDDE
(

(

25 https.//www.wordfence.com/blog/2020/04/high-severity-vulnerability-patched-in-real-time-find-and-replace-plugin

https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-13642
https://www.wordfence.com/blog/2020/04/high-severity-vulnerability-patched-in-real-time-find-and-replace-plugin/

Corrected and Secured Code

The following is the same far options page () function hooked from menu page
action that now has check admin referrer ('far rules from') inplaceto
validate that a request is coming from a legitimate authenticated user session providing
adequate CSRF protection.

far_options_page() {
(([
check_admin_referer(
= stripslashes_deep(

1) && is_array(
1 =>

IV. Missing File Upload Validation

File uploading, whether it be from a setting import functionality or from a user profile
picture upload, has the potential to be disastrous for a WordPress site if the file isn't
properly validated before being uploaded to the site's server.

While malicious file upload vulnerabilities may be less commonly found in WordPress
plugins, themes and core, they are among the most critical vulnerabilities you can find in
WordPress due to the fact that they open the door to remote code execution and
complete site takeover.

An Open Door to Remote Code Execution

WordPress runs on PHP and, therefore, any PHP file installed in any directory of a
WordPress site will become executable, unless specific security hardening has been
implemented. When a user has the ability to upload a PHP file to a WordPress site, they
can add functions to the file that can allow them to achieve remote code execution, which
allows that user to run commands on the target server. This can allow an attacker to
perform complex and dangerous attacks on the compromised server.

If there are vulnerabilities on the server, then the attacker can escalate their control over
an affected server, potentially gaining root access to the entire server and taking over any
other account hosted there. Even if they fail to gain root access, the attacker will have
access to the WordPress site’'s hosting environment and be able to delete, modify and
further infect any files and any sites hosted in the same account.

In addition to obtaining remote code execution through PHP file uploads, unrestricted file
uploads can also make it possible for attackers to upload other files like HTML files,
JavaScript files, or SVG files that can introduce scripts that, when accessed by
administrators, perform a variety of actions. Furthermore, unrestricted file uploads can
make it possible to upload executable files that could have a significant impact on a
server, as we've seen in cases of cryptominers, spam emailers and other malware
compromising server resources.

Insufficient file validation leads to a weakness classified by MITRE as “CWE-434:
Unrestricted Upload of File with Dangerous Type"?® which means that the software
is missing the appropriate checks to validate a files type, and allows uploads of
dangerous files, which in the case of WordPress would be PHP.

% https://cwe.mitre.org/data/definitions/434 html

17 WORDFENCE.COM

https://cwe.mitre.org/data/definitions/434.html

Finding Unrestricted File Uploads

There are several things to look for when validating file upload functionalities.
$ FILES®'

This super global is used to obtain file data from a request, so it is critical to look for any
instances of it and review the corresponding functionality. Verify that, if a file is being
uploaded to the server from an external source, that there are appropriate file validation
and sanitization mechanisms in place.

One mistake we have seenistheuse of $ FILES['type'] global variable to validate a
file's type. This variable determines the file's type based on the Content-Type header sent
from a browser, however this can easily be spoofed by simply intercepting a request and
setting the Content-Type header. Attackers can easily set this to make the file appear safe
while the content being sent is not. Content-Type headers should be treated as an unsafe
method for file type checking.

In addition to looking for any instances of $ FILES, any PHP-specific file function used
for uploading file content should also be examined. The following PHP functions can be
used to upload files in PHP. If any of these functions are being used without any file type
validation like wp_check filetype Orwp check filetype and ext then they
may be vulnerable to arbitrary file uploads.

file put contents®®
fopen?®

fwrite®®

move uploaded file’!

Further analysis may be required if there is a custom file type mechanism in place. If a
custom file type checking mechanism is in place, then it must perform file type checking
based on the content of the file, so that malicious content cannot be hidden in seemingly
innocent files like image files, and it must also perform file type checking on the extension
of the file so that files with dangerous extensions cannot be uploaded.

2 https://www.php.net/manual/en/reserved.variables files.php

2 https://www.php.net/manual/en/function file-put-contents.php

2 https://www.php.net/manual/en/function.fopen.php

%0 https://www.php.net/manual/en/function.fwrite

ST https://www.php.net/manual/en/function.move-uploaded-file.php

18 WORDFENCE.COM

https://www.php.net/manual/en/function.move-uploaded-file.php
https://www.php.net/manual/en/function.fwrite
https://www.php.net/manual/en/function.fopen.php
https://www.php.net/manual/en/function.file-put-contents.php
https://www.php.net/manual/en/reserved.variables.files.php

When auditing for arbitrary file upload vulnerabilities in WordPress plugins and themes,
examine any use of exif imagetype” to determine a file type. This function will use
the first few bytes of a file, also known as magic bytes, to determine its type.
Unfortunately, files also can easily be spoofed to bypass this check by simply adding the
required magic bytes to the top of a file. As such, exif imagetype is considered an
insecure way to perform file upload validation.

Important note

When looking for arbitrary file upload vulnerabilities, note that the
sanitize file name® function can sometimes lead to arbitrary file upload
vulnerabilities if not properly implemented.

For example, if the filename sanitization function occurs after a filetype extension check
that only checks extension against a blocklist of known bad extensions, then an attacker
could supply a filename to bypass this check. For example, an attacker could name a file
maliciousfile(.php) which would pass the file extension filtering since (.php) is not a
known malicious file extension. Once the file extension check is completed and the
flename is passed to sanitize file name, the parentheses will be stripped from the
fllename converting it to maliciousfile.php, allowing for a malicious file upload bypassing
the original file extension checking.

Further, some web servers will process the first extension found in a file, therefore, it is
important to detect and prevent the uploading of files with double extensions. If a file
uploadis not using wp handle uploador sanitize file name,then it may be
susceptible to double extension uploading and may introduce a vulnerability on some
servers.

Properly Validating File Uploads

WordPress makes it easy to handle file uploads securely with the

wp handle upload ()** function. This function checks the extension of the file being
uploaded with a predefined list of acceptable extensions. Using this native function when
building file upload functionality for a WordPress plugin or theme will natively block
potentially malicious files from being uploaded to a WordPress site.

%2 https://www.php.net/manual/en/function.exif-imagetype php
% https://developer.wordpress.org/reference/functions/sanitize_file name/
% https://developer.wordpress.org/reference/functions/wp_handle_upload/

19 WORDFENCE.COM

https://developer.wordpress.org/reference/functions/wp_handle_upload/
https://developer.wordpress.org/reference/functions/sanitize_file_name/
https://www.php.net/manual/en/function.exif-imagetype.php

If it is prefered to use custom file upload features, it is recommended to use the
wp_check filetype and ext ()*orwp check filetype ()°°functions atthe
very minimum to validate the uploaded file's type and its extension to verify that it should
be allowed to be uploaded to a WordPress site.

It is also possible to use custom file filtering functions, however, they must be securely
implemented. In order to do that, verify that the contents within the file are not malicious.
As well, validate that the file's extension is a safe one, this can be done with a regular
expression and blocklisting. The file extension checking should prohibit the upload of all
various PHP extensions like .php, .phtml, .phar, php6, etc along with other potentially
harmful file extensions like .svg, .html, js, etc.

Alternatively, a developer can implement file extension allowlisting instead of blocklisting
which will more easily restrict file upload ability to files that the application intends to
allow. For example, if an application only needs to upload image files, then only allow files
with the jpeg, .png, .gif, and other desired image file extensions along with other checks.

Always make sure that sanitize file name () happens at least once before the file's
extension is checked so that double extensions cannot be supplied and users will not be
able to bypass extension checking.

%5 https://developer.wordpress.org/reference/functions/wp_check_filetype_and_ext/
3% https://developer.wordpress.org/reference/functions/wp_check_filetype/

20 WORDFENCE.COM

https://developer.wordpress.org/reference/functions/wp_check_filetype/
https://developer.wordpress.org/reference/functions/wp_check_filetype_and_ext/

Example from Quiz and Survey Master Plugin < =7.0.0 - Unauthenticated
Arbitrary File Upload (CVE-2020-35949)%

The following is an example of an arbitrary file upload vulnerability discovered in the Quiz
and Survey Master plugin. Below are the wp_ajax and wp ajax nopriv actions that
hooked to the gsm upload image fd gquestion function that would upload a file
upon submission of a quiz.

add_action(¢))
add_action(())

Insecure Code Prior to Patch

This function was vulnerable to arbitrary file uploads due to the fact that it used the files
Content-Type header to determine the files type by using s FILES['file'] ['type'].
This could be spoofed to anything that would pass the mime check like image/jpeg
even when the file was using a PHP file extension.

01

1) ? sanitize_text_field([
->get_question_setting(
->get_question_setting(

)
= explode(

== R
[1
[1
[1
[1

[1
[1

non

[1
[1

[1

] =

json_encode(

%7 https://www.wordfence.com/blog/2020/08/critical-vulnerabilities-patched-in-quiz-and-survey-master-plugin

https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-35949
https://www.wordfence.com/blog/2020/08/critical-vulnerabilities-patched-in-quiz-and-survey-master-plugin

Secured and Corrected Code Sample

The developers corrected this flaw by implementing the use of wp_check filetype
which retrieves the files type by checking the files extension and will only return it if it is in
the list of acceptable extensions created by WordPress.

){
= explode(

== R
[1
[1
[1
[1

[1
[1

= sanitize_file_name(

= wp_check_filetype(

[

1=

1=_2(

json_encode (

)

1) &&

01

1) ? sanitize_text_field([

[1[
)

in_array/(

->get_question_setting(
->get_question_setting(

V. Deserialization of User-Supplied Input

PHP is an object oriented programming (OOP)*® language, which allows the code to call
objects from classes. Due to the nature of Object Oriented Programming and the fact that
PHP allows storing and transmitting objects via serialization, deserialization of
user-supplied input can lead to potentially disastrous events. If the unserialize () °° or
maybe unserialize ()“°functions are used on user-supplied input, then an attacker
can modify the execution of loaded classes via magic methods.

In addition to the standard deserialization vulnerabilities as a result of the unserialize
and mabe unserialize functions, there are also phar deserialization weaknesses. A
phar*' file is a PHP archive, in other words, it is a single file containing several PHP files.
These phar files have serialized meta-data stored in the manifest of the file. When called
through certain file functions, the meta-data will deserialize the same way the
unserialize () function deserializes data. This can lead to a deserialization
weakness. Though these are less commonly found and require unigue conditions to
exploit, they still require attention when developing code for WordPress plugins and
themes or reviewing them for vulnerabilities.

These deserialization flaws can lead to a vulnerability which is identified as PHP Object
Injection.

The Magic of PHP Object Injection Vulnerabilities

PHP Object Injection vulnerabilities on their own are not critical, however, when they are
paired with a full POP chain they can become disastrous leading to full site takeover.

A POP chain is a way to chain magic methods*? together, or use a single magic method,
to execute objects in classes. These actions perform actions that typically involve
deleting, updating, or reading files and triggering commands remotely.

The most common magic methods that can be triggered as part of a POP chain are
__wakeupand destruct, which are automatically called during the deserialization
of objects in PHP.

% https://www.w3schools.com/php/php oop what is.asp

% https://www.php.net/manual/en/function.unserialize.php

“0 https://developer.wordpress.org/reference/functions/maybe _unserialize/
41 https://www.php.net/manual/en/phar.using.intro.php

“2 https://www.php.net/manual/en/language.oop5.magic.php

23 WORDFENCE.COM

https://www.php.net/manual/en/language.oop5.magic.php
https://www.php.net/manual/en/phar.using.intro.php
https://developer.wordpress.org/reference/functions/maybe_unserialize/
https://www.php.net/manual/en/function.unserialize.php
https://www.w3schools.com/php/php_oop_what_is.asp

Once an attacker has access to update, delete, or read files they can steal sensitive data,
inject backdoors and malware into sites, and cause denial of service attacks. Further,
when they have the ability to execute commands remotely they can completely take over
the vulnerable server. As such, it is critical to ensure that deserialization of unvalidated
user-supplied input does not occur.

Deserialization flaws lead to a weakness classified by MITRE as “CWE-502:
Deserialization of Untrusted Data™ which means that the software has a flaw that
allows the deserialization of data that has not been validated or sanitized, such as
user-supplied input.

Discovering Deserialization Weaknesses

To find deserialization weaknesses, the presence of unserialize () or

maybe unserialize () functions anywhere throughout the codebase should be
analyzed. If they are found, validate that no user input can be supplied to those functions.
If user input can be supplied, then ensure that the input is sanitized or validated. This
sanitization or validation should strip out any use of an object that is not the intended
data. If there is no validation on user-supplied input passed to unserialize (), thenitis
likely that there is a PHP Object Injection vulnerability in the code and further analysis
should be done.

In addition to looking for the presence of unserialize () ormaybe unserialize(),
check for the use of any file system function with unfiltered user-supplied input. These
functionsinclude file exists, fopen, copy, filesize, mkdir, and

file get content,toname a few. Use of these functions in conjunction with
unfiltered input can indicate the presence of a phar deserialization weakness. Further
investigation should determine whether the phar: // wrapper along with a complete
path to a file can be supplied.

Note that the file does not need a .phar extension in order to be deserialized. During an
exploit, a .phar files extension can simply be switched to .jpg due to the phar wrapper. This
means that the upload of a phar file that needs to be used in a phar deserialization
vulnerability will be relatively simple and can bypass traditional extension filtering
protections.

3 https://cwe.mitre.org/data/definitions/502.html

24 WORDFENCE.COM

https://cwe.mitre.org/data/definitions/502.html

A recent example of a phar deserialization weakness resulting in a PHP Object Injection
vulnerability was recently patched in WordPress* from the PHPMailer software. The
PHPMailer software used the file exists () function on the file path and allowed the
use of wrappers in an attempt to support UNC filenames. This made it possible to
deserialize phar files if user-supplied paths could be used.

If a PHP Object Injection vulnerability is discovered, then the next step is to look for any
magic methods that would escalate the severity of the vulnerability. The most common
magic methods that should be looked for are wakeup, destruct,and
__toString, though itis important to remember that there are several additional magic
methods that can potentially be used for a POP chain.

Due to the unique nature of WordPress core, plugin and theme ecosystem, it is entirely
possible for a site to have a single plugin with a PHP Object Injection vulnerability installed,
while another distinct plugin contains a magic method that could be used to complete a
POP chain for the PHP Object injection vulnerability.

Preventing Deserialization Vulnerabilities

Use JSON encoding rather than PHP serialization for any user-supplied structured data
so that unauthorized users cannot alter the flow of code execution to perform malicious
actions.

As for phar deserialization vulnerabilities, validate that PHP wrappers like phar://
cannot be supplied when users are able to supply the full path to files. In addition, validate
that PHP wrappers cannot be supplied to functions like file exists, fopen, copy,
filesize,mkdir, file get contentand others that may deserialize phar file
metadata when supplied. Do so by sanitizing the user-supplied input to strip out known
PHP wrappers®. Alternatively, plugin functionality can restrict acceptance of
user-supplied paths so that the user can only supply a filename, while strict functionality
supplies the path to the file for usage in a function.

4 https://www.wordfence.com/blog/2021/05/wordpress-5-7-2-security-release-what-you-need-to-know

4 hitps//www.php.net/manual/en/wrappers.php

25 WORDFENCE.COM

https://www.php.net/manual/en/wrappers.php
https://www.wordfence.com/blog/2021/05/wordpress-5-7-2-security-release-what-you-need-to-know/

Example from Facebook for WordPress Plugin <=2.2.2 - Unauthenticated
PHP Object Injection (CVE-2021-24217)*

The following is an example of an unauthenticated PHP Object Injection vulnerability that
was present in the Facebook for WordPress plugin. Below are the the admin post and
admin post nopriv actions that are hooked to the handle postback function that
would ultimately trigger the run _action function.

__construct(
(->
Exception(
}
add_action(->
(&
add_action(
+
(&
add_action(

Insecure Code Prior to Patch

The run_action function was vulnerable to PHP Object injection due to the use of
unserialize () onthe user-supplied input obtained from the event data variable.
This plugin did have a complete POP chain with destruct present in the GuzzleHTTP
package included in the plugin.

run_action() {

= unserialize(baseé4_decode(

FacebookServerSideEvent: :send(

b

(\Exception) {
error_log()

https://wpscan.com/vulnerability/509f2754-a1a1-4142-9126-ae023a88533a
https://www.wordfence.com/blog/2021/03/two-vulnerabilities-patched-in-facebook-for-wordpress-plugin

Secured and Corrected Code Example

The developers fixed the vulnerability by using json decode () on the user-supplied
data instead of using the unserialize () function. They also removed the GuzzleHTTP
package from the plugin.

run_action() {

[

= json_decode(baseé4_decode(

)

->convert_array_to_event(

FacebookServerSideEvent: :send(

(\Exception) {
error_log()

VI. Lack of Sanitization and Escaping on
User-Supplied Inputs

WordPress plugins and themes almost always use some form of user-supplied input,
whether it be to change settings via the WordPress administrative dashboard or register a
custom form that takes user-supplied information from the front end of the WordPress
site. No matter how user data is handled, it must be properly secured. When
user-supplied inputs are not properly secured through sanitizing and escaping, they can
lead to a vulnerability called Cross-Site Scripting (XSS), which is the most common
vulnerability we've seen in both WordPress plugins and themes.

This vulnerability occurs when users can supply values that contain HTML/scripting tags
(e.g. <,>) or unescaped single or double quotes that can be used to add attributes to
HTML elements in values that make it possible for users to inject malicious code like
JavaScript into web pages. If these values are later echoed to or displayed on a web page
then the browser will execute the supplied JavaScript which can be used to perform a
wide variety of malicious actions.

There are three core forms of Cross-Site Scripting: reflected, stored, and DOM-based.
Reflected XSS occurs when the malicious code is immediately echoed or displayed back
in the browser and is not stored anywhere on the site's server or in the database. These
are typically one-time exploits and require some form of social engineering to be
successful. Alternatively, Stored XSS occurs when the malicious code is stored in the site
database or on the server and can be executed multiple times, for instance, every time
someone accesses a web page. These typically do not require any form of social
engineering to be successful, though it is possible in some cases to, for instance, use a
CSRF vulnerability to trick a user with high privileges into injecting Stored XSS, which
would require social engineering. The final type is DOM-based XSS which is far less
common in WordPress and occurs when user-supplied input can be supplied to a sink
within the DOM (Document Object Model). These are usually harder to successfully
exploit and will require some level of social engineering.

Cross-Site Scripting Vulnerabilities Open Doors to Remote Code Execution

Protecting against vulnerabilities created by unsanitized inputs and unescaped outputs is
critical on WordPress sites. Cross-Site Scripting vulnerabilities can be used to perform a
plethora of actions on a WordPress site if the JavaScript is triggered while an
administrator is authenticated and visits a page containing the malicious JavaScript
payload. An attacker could write a script to inject a backdoor in theme or plugin files.

28 WORDFENCE.COM

Alternatively they could write a script to create a new administrative user account that
could be used to log into the vulnerable target site and further infect it. These are just a
couple of ways an attacker can use XSS vulnerabilities to impact a site.

In addition to WordPress site modification, Cross-Site Scripting vulnerabilities can be
used to redirect visitors browsing a site to any external site. These are often other
infected sites containing spam. Worse yet, these vulnerabilities can be used to exploit
vulnerabilities in site visitors' browsers, or hook to a browser using tools like BeEF¥,
allowing attackers to perform actions to further infect victims' computers or steal
sensitive data.

Considering the criticality of Cross-Site Scripting vulnerabilities and how easily they can
be introduced into software, it is especially important to make the best effort to avoid
introducing them into WordPress core, themes, and plugins not only to protect the site
owners but site visitors as well.

Unsanitized and unescaped inputs leads to a weakness classified by MITRE as
‘CWE-79: Improper Neutralization of Input During Web Page Generation (‘Cross-site
Scripting’)"*® which means that the software has a flaw that allows unsanitized or
unescaped user-supplied input which can be used to execute malicious code in a
user's browser. This could also be identified by the OWASP’s Top Ten as
A7:2017-Cross-Site Scripting (XSS)*.

Discovering Cross-Site Scripting Vulnerabilities

When looking for the presence of Cross-Site Scripting vulnerabilities, look for any instance
where user-supplied data is being accepted. This includes all of the following super global
variables:

$ poST’’: Used to obtain parameters from a HTTP POST request.
$ GET”':Used to obtain parameters from a HTTP GET request.

$ REQUEST °% Used to obtain parameters from any HTTP request type.

4 hitps://beefproject.com/
“8 https://cwe.mitre.org/data/definitions/79.html
9 https://owasp.org/www-project-top-ten/2017/A7_2017-Cross-Site_Scripting (XSS)

0 https:/www.php.net/manual/en/reserved.variables.post.ph

> https://www.php.net/manual/en/reserved variables.get.php

% https://www.php.net/manual/en/reserved.variables.request.ph

29 WORDFENCE.COM

https://www.php.net/manual/en/reserved.variables.request.php
https://www.php.net/manual/en/reserved.variables.get.php
https://www.php.net/manual/en/reserved.variables.post.php
https://owasp.org/www-project-top-ten/2017/A7_2017-Cross-Site_Scripting_(XSS)
https://cwe.mitre.org/data/definitions/79.html
https://beefproject.com/

$ SERVER’’ Used to obtain various different header related values from an HTTP
request

$ COOKIE"*:Used to obtain HTTP cookie values from the cookie header.

$ FILES®®:Used to obtain information like file content, title, and more about a file from
an HTTP request.

Additionally, using a function such as filter input ()>°onany of these superglobals
without specifying an adequate filter may also indicate the presence of a vulnerability.

The use of these variables with user-supplied inputs must be validated to ensure that the
supplied data is sanitized to guard against malicious activity. Sanitization can be done
either using a WordPress sanitization function or a custom sanitization function.

Any user-supplied input should also be traced to see if the data is ever echoed or
displayed to a webpage. If it is, then it should also be verified that the data is being
escaped during output with a WordPress escaping function or custom escaping function.

A vulnerable example may look something like: echo S$uservalue where the value isn't
immediately retrieved from user-supplied inputs, however, was supplied by a user at
some point.

In addition, the following WordPress specific functions can potentially introduce a XSS
vulnerability if improperly implemented.

add query arg’’/remove query arg”®:These functions are used to add and
remove query arguments (aka parameters) from a string. The parameters supplied to
these functions are echoed to a page. Without proper sanitizing and escaping on any
user-supplied values passed to these functions, a malicious actor can easily add scripting
tags to the values then echoed and executed in the browser.

% https://www.php.net/manual/en/reserved.variables.server.php

* https//www.php.net/manual/en/reserved.variables.cookies.php

% https//www.php.net/manual/en/reserved.variables files.php

% https://www.php.net/manual/en/function filter-input.php

° https://developer.wordpress.org/reference/functions/add_query_arg/

% https://developer.wordpress.org/reference/functions/remove_guery_arg/

30 WORDFENCE.COM

https://developer.wordpress.org/reference/functions/remove_query_arg/
https://developer.wordpress.org/reference/functions/add_query_arg/
https://www.php.net/manual/en/function.filter-input.php
https://www.php.net/manual/en/reserved.variables.files.php
https://www.php.net/manual/en/reserved.variables.cookies.php
https://www.php.net/manual/en/reserved.variables.server.php

Theunfiltered html®’ capability

When looking for Cross-Site Scripting vulnerabilities, be mindful of the

unfiltered html capability. This allows site users with the administrator and editor
rolesto add unfiltered html to pages, posts, widgets and other places throughout a
WordPress site. There are several instances where administrative and editor users should
be able to add scripting tags to areas, and not all instances of unsanitized input allowed
by these two roles should be considered Cross-Site Scripting vulnerabilities.

Further, when investigating plugins or themes that allow editing of pages and posts, such
as page builder plugins, it is important to verify that the unfiltered html capability is
being upheld. Verify that lower-level users without the unfiltered html capability that
have access to edit pages and posts, like contributors and authors, do not have any
introduced capabilities that allow them to use HTML tags in pages and posts so that they
cannot inject malicious scripts and exploit Cross-Site Scripting vulnerabilities. A perfect
example of how this can easily become an issue is the Cross-Site Scripting vulnerabilities
found throughout the Elementor ecosystem that allowed contributors and authors to
inject malicious scripts in pages due to the lack of protection on tags that could be used
by users in the Elementor editor.° If a plugin adds additional lower-level user roles, those
should also be examined for these types of protections.

Sanitizing Inputs and Escaping Outputs to Prevent Cross-Site Scripting
Vulnerabilities and Properly Format Data

WordPress provides an array of functions that can be used to sanitize user-supplied
inputs.®" Sanitization will strip out disallowed characters to prevent Cross-Site Scripting
vulnerabilities, and ensure data is formatted in the way that it should be. The following is
a list of sanitization functions that can be used in WordPress plugins and themes. This
list also contains sanitization functions that provide protection against other types of
vulnerabilities that are related to unsanitized user inputs.

Please bear in mind that many of these functions are specific to their intended use case
and can potentially cause issues or even introduce new vulnerabilities if used incorrectly or
outside of appropriate contexts (for instance, running sanitize_file_name after validating the
extension of an uploaded file).

% https://wordpress.org/support/article/roles-and-capabilities/#unfiltered_html
% https://www.wordfence.com/blog/2021/04/recent-patches-rock-the-elementor-ecosystem/
®1 https://developer.wordpress.org/plugins/security/securing-input/

31 WORDFENCE.COM

https://developer.wordpress.org/plugins/security/securing-input/
https://www.wordfence.com/blog/2021/04/recent-patches-rock-the-elementor-ecosystem/
https://wordpress.org/support/article/roles-and-capabilities/#unfiltered_html

sanitize text field()

sanitize email ()
sanitize file name ()
sanitize html class()
sanitize key()

sanitize meta ()
sanitize mime type ()
sanitize option ()

sanitize title()
sanitize title for query()
sanitize title with dashes()
sanitize user|()

esc url raw()

When it comes to escaping outputs, there are several additional WordPress functions that
can be used.®? Use these whenever user-supplied data is output on pages as they will
strip out any bad characters.

esc_attr()
esc_html ()
esc_Js ()
esc_textarea()
esc_url ()

esc url raw()

In addition to those escaping functions, WordPress also offers some additional escaping
functions based on wp_kses () ** that can be used for page and post editing that will
strip out unsafe HTML attributes and tags for users without the unfiltered html
capability.

wp kses ()

wp kses post ()

wp_ kses data()

wp filter post kses()
wp filter nohtml kses()

As always, custom sanitizing and escaping functions can be implemented. However, the
native functions provided by WordPress make the process much simpler. If using custom

2 hitps://developer.wordpress.org/plugins/security/securing-output
% https://developer.wordpress.org/reference/functions/wp_kses/

32

WORDFENCE.COM

https://developer.wordpress.org/reference/functions/wp_kses/
https://developer.wordpress.org/plugins/security/securing-output/

sanitizing and escaping, ensure that common scripting tags cannot be included in
user-supplied inputs, unless absolutely necessary for the functionality of the plugin or
theme. Also, ensure that disallowed HTML entities cannot be echoed to a page with being
properly escaped.

Ensuring that data is properly sanitized and escaped will not only ensure that Cross-Site
Scripting vulnerabilities are not introduced, but it will also ensure data is properly
formatted for the functionality of plugins and themes.

33 WORDFENCE.COM

Example from 301 Redirects — Easy Redirect Manager Plugin <= 2.4.0 -
Stored Cross-Site Scripting Vulnerability (CVE-2019-19915)%

The following is an example from the 301 Redirects — Easy Redirect Manager plugin
where there was an access control vulnerability due to the use of is_admin usedin
conjunction with wp_ajax actions without any capability checks that results in both a
arbitrary redirect vulnerability and stored Cross-Site Scripting vulnerability due to the use
of unsanitized user-supplied input.

__construct()

(is_admin()) {
((->config(
add_action())

add_action())

add_action(

b

add_action(
add_action(
add_action(

add_action(
add_filter(. plugin_basename (

Shttps://www.wordfence.com/blog/2019/12/critical-vulnerability-patched-in-301-redirects-easy-redirect-manager/

https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2019-19915
https://www.wordfence.com/blog/2019/12/critical-vulnerability-patched-in-301-redirects-easy-redirect-manager/

Insecure Code Prior to Patch

The ajax_save redirect () function was vulnerable to Stored Cross-Site Scripting
due to the acceptance of user-supplied input with no sanitization from the id parameter
that is later echoed to the page as the redirect id.

(is_numeric(

[

::_save_redirects(

[o]

::get_redirect(

ob_start()

= urldecode(

= urldecode(

(.
= ob_get_contents()
ob_end_clean()

json_encode(

Secured and Corrected Code Sample

The following shows the addition of the CSRF protection and capability check, along with
a check to verify that the user-supplied id value is an integer with the intval ()
function, that validates if the value is an integer. This provides adequate protection
against the XSS vulnerability.

check_ajax_referer(

(!current_user_can(

=> ([1) ? intval(

esc_attr(L
esc_attr([
(is_numeric([

[1

VII. Unprepared SQL Queries

Nearly all of a WordPress site's data, including but not limited to site options, user
passwords, post and page content, and plugin settings, are stored in a database, most
commonly a MySQL database. All of the data stored in the database can be accessed
using Structured Query Language, also known as SQL. In order to retrieve and update
data from the database, SQL queries must be used. Therefore, it's common for
developers to use SQL queries in plugins and themes to select, insert, update or delete
data from the database as part of plugin or theme functionality.

SQL queries can be chained together using the UNION operator, and additional data can
be retrieved from databases by using boolean statements, sleep functions, and even
error-inducing statements. If user-supplied input to a SQL query is not properly sanitized,
escaped, or prepared, then it can allow an attacker to either obtain additional data from
the database beyond the originally anticipated data, or even manipulate the data stored
within the database. This is referred to as a SQL Injection vulnerability. There are 4 core
types of SQL injection vulnerabilities that are frequently found: boolean/blind-based SQLi,
error-based SQLi, time-based SQLi, and UNION-based SQLI.

Boolean-Based SQLi, also commonly referred to as blind-based SQLi, vulnerabilities
occur when an immediate observable response of data cannot be obtained while
injecting additional SQL commands or queries, however, a response indicating that the
results are true or false occurs. This type of SQLi vulnerability requires diligence and time
as the injected SQL query will pull data from the database on character at a time based
on whether or not the injected query/statement returns true or false.

Error-Based SQLi vulnerabilities occur again when there is no immediate observable
response of data from an injected SQL query, however, an error message is returned that
can allow a user to determine if information is present in a database. This is very similar
to Boolean-based SQLi vulnerabilities, however, it relies on error messages instead of true
or false type responses.

Time-Based SQLi vulnerabilities occur when there is no observable difference in the
response of a SQL query, however, injected queries or statements can return a response
within a specified delayed response that allows the user to obtain data from the
database. As with blind SQLi vulnerabilities, this type of vulnerability requires patience and
can only retrieve values one character at a time, unless a value is easily guessed.

37 WORDFENCE.COM

UNION-based and Classic SQLi vulnerabilities fall within the same category and occur
when SQL queries can be chained together to immediately retrieve data from a database.
These are the easiest forms of SQL injection vulnerabilities to exploit and they make it the
easiest to obtain data from a database. These can often be used to obtain complete
dumps of information like all rows in the wp_users table for example.

Note that an additional form of SQL injection, known as a stacked query, which consists
of ending a SQL statement with a semicolon (;) and beginning a new statement, is
common in other web applications but is not a viable attack on the PHP/MySQL stack
used by WordPress.

SQL Injection Can Lead to Sensitive Information Theft

Not properly preparing or escaping data supplied to SQL queries results in a vulnerability
called SQL Injection. This vulnerability refers to the ability to inject SQL queries into
already existing SQL queries. If a plugin or theme is vulnerable to SQL Injection then an
attacker can obtain data like WordPress usernames and passwords, along with any other
sensitive data stored in the database like a site’s salts and keys. In some incredibly rare
cases, where a plugin is extremely poorly coded or the MySQL server is improperly
configured, an attacker could modify information in the database as well.

For that reason, it is important to ensure that WordPress plugins and themes have
adequate protection to ensure a site doesn't become vulnerable to SQL Injection attacks
that can result in sensitive information disclosure.

SQL Injection flaws are classified by MITRE as “CWE-89: Improper Neutralization of
Special Elements used in an SQL Command ('SQL Injection’)”> which means that the
software has a flaw that allows this as the result of improper sanitization and
validation on SQL queries that allow users to manipulate the existing SQL query to
obtain/modify additional data in the database. This could also be identified by the
OWASP's Top Ten as A1:2077-Injection®.

Where are SQL Injection vulnerabilities found?

When validating that there are no SQL Injection vulnerabilities present in a plugin or
theme, the following WordPress functions that do not inherently perform any preparation
or sanitization should be looked for:

%5 https://cwe. mitre.org/data/definitions/89.htm!
% https://owasp.org/www-project-top-ten/2017/A1_2017-Injection

38 WORDFENCE.COM

https://owasp.org/www-project-top-ten/2017/A1_2017-Injection
https://cwe.mitre.org/data/definitions/89.html

$wpdb->get results ()°":This function is used to retrieve a set of results via a SQL
query and is not limited to just one row of results.

$wpdb->query () °®: This function is similar to get results, however, any SQL query
can be run and it is not restricted to SELECT queries.

$wpdb->get row () **: This function will run a SQL query and will return the results of a
database row.

$wpdb->get col () ’°: This function will run a SQL query and will return the results of a
database column.

If user-supplied input is used to run the query, validate that the function is used alongside
Swpdb->prepare () '*. Ifitis, then it can be considered to be properly validated and
secured, however, if the function isn't being prepared, then it is likely vulnerable to SQL
injection.

In addition to looking for WordPress specific functions that can be vulnerable to SQL
injection vulnerabilities, it is important to look for any other instances of SQL queries that
may be implemented with custom functionality. The includes looking for various SQL
statements like:

DELETE
UPDATE
INSERT
ORDER BY

If user-supplied input is used to run the query, then validate that the use of the SQL query
is performed with the appropriate preparation function like $wpdb->prepare () %,
Swpdb->update () '?, Swpdb->insert () "%, or Swpdb->delete () '°. If itis not, then it
should be further tested to see if it is vulnerable to SQL Injection.

%7 https://developer.wordpress.org/reference/classes/wpdb/get_results/

% https://developer.wordpress.org/reference/classes/wpdb/query/

% https://developer.wordpress.org/reference/classes/wpdb/get_row/

9 https://developer.wordpress.org/reference/classes/wpdb/get_col/

" The WordPress Swpdb->prepare function will prepare a SQL query by sanitizing any user-supplied
inputs prior to running the SQL query, preventing attackers from being able to inject additional SQL queries
or statements.

’2 https://developer.wordpress.org/reference/classes/wpdb/prepare/
73 https://developer.wordpress.org/reference/classes/wpdb/update/
4 https://developerwordpress.org/reference/classes/wpdb/insert/
7S https://developerwordpress.org/reference/classes/wpdb/delete/

39 WORDFENCE.COM

https://developer.wordpress.org/reference/classes/wpdb/delete/
https://developer.wordpress.org/reference/classes/wpdb/insert/
https://developer.wordpress.org/reference/classes/wpdb/update/
https://developer.wordpress.org/reference/classes/wpdb/prepare/
https://developer.wordpress.org/reference/classes/wpdb/get_col/
https://developer.wordpress.org/reference/classes/wpdb/get_row/
https://developer.wordpress.org/reference/classes/wpdb/query/
https://developer.wordpress.org/reference/classes/wpdb/get_results/

Securely Performing SQL Queries

There is a fairly simple solution to ensure SQL queries are performed securely and that is
through the use of prepared statements. WordPress makes this simple with the
Swpdb->prepare () function. This can be used on its own prior to running SQL queries
or be used in conjunction with the other SQL query functions like swpdb->get row ()
and $wpdb->get col ().

In addition to using prepared statements, developers can also implement escaping on
any user-supplied values that may get passed to the database with WordPress native SQL
escaping functions like esc_sql () ’®, for generic escaping, and
sanitize sgl orderby (), for escaping when passing use supplied input to an
ORDER BY statement in a query. When using SQL escaping, we still recommend using the
Swpdb->prepare () function alongside as special methods can make it possible for
attackers to bypass the escaping and still achieve a SQL Injection.

’¢ https://developer wordpress.org/reference/functions/esc_sql/
7 https://developer wordpress.org/reference/functions/sanitize_sql_orderby/

40 WORDFENCE.COM

https://developer.wordpress.org/reference/functions/sanitize_sql_orderby/
https://developer.wordpress.org/reference/functions/esc_sql/

Example from Tutor LMS: Authenticated <= 1.8.2 - SQL Injection
(CVE-2021-24183)"8

The following is an example of an authenticated SQL injection vulnerability that could be
exploited using UNION-based methods from the Tutor LMS plugin. The AJAX action
wp_ajax tutor quiz builder hooked to the

tutor quiz builder get question form could be triggered by authenticated
users, such as students, due to the fact that the function did not perform any nonce or
capability checks.

add_action(())

Insecure Code Prior to Patch

The tutor quiz builder get question form function was vulnerable to
union-based SQL injection attacks due to the use of $wpdb->get row without any
preparation or sanitization on the $question id value that was obtained via
user-supplied input.

[OF

= sanitize_text_field([1)
= sanitize_text_field(tutor_utils()->avalue_dot(

)
= tutor_utils()->quiz_next_question_id()
= tutor_utils()->quiz_next_question_order_id(

(
=>
=>
=
=
=>
=> maybe_serialize(0)

=>

->insert(

= ->get_row(}tutor_quiz_questions question_id = {

ob_start()
tutor()->
= ob_get_clean()

wp_send_json_success(

https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-24183
https://www.wordfence.com/blog/2021/03/several-vulnerabilities-patched-in-tutor-lms-plugin/

Secured and Corrected Code Sample

This vulnerability was corrected when the developer added the use of
Swpdb->prepare () tothe swpdb->get row () function which performs preparation
of the SQL query and sanitizes the user-supplied values. Doing so protected against
arbitrary SQL queries and commands. This was in conjunction with the addition of a
nonce and capability check for unauthorized use protection.

tutils()->checking_nonce()

= sanitize_text_field([1)
= sanitize_text_field(tutor_utils()->avalue_dot(

(!tutils()->can_user_manage ()) {
wp_send_json_error(¢

M
= tutor_utils()->quiz_next_question_id()
= tutor_utils()->quiz_next_question_order_id(

(

=>

=>

=

=>

=>

=> maybe_serialize()
=> esc_sql(

->insert(

->get_row(->prepare(- }tutor_quiz_questions question_id = %d

ob_start()
tutor()->
= ob_get_clean()

wp_send_json_success (

VIII. Usage of Certain PHP Functions with
User-Supplied Input

There are several PHP functions that can be used for remote command and code
execution when using PHP. A PHP command function makes it possible to run
commands like 1s, to list a directory, touch, to make a new file, mkdi r, to make a new
directory, and many other commands.

Any command that could be run via a command line while connected to a server can be
run by a PHP command function. On the other hand, there are other PHP functions that
can make it possible to run arbitrary PHP code like <?php phpinfo () ; 2> and these
are commonly referred to as PHP code execution functions.

Sometimes WordPress plugins and themes will use these functions to run commands
and code in order to perform tasks like making new directories, uploading files, adding
custom PHP code snippets to a site, and more. It is actually fairly uncommmon to find PHP
command/code execution functions as the sole cause of a vulnerability in WordPress,
however, when it does occur it can cause significant damage to a WordPress website.
The biggest concern occurs when users can control the input that gets run through the
command or code function without any filtering or sanitization performed on what is
being supplied.

The Impact of Code & Command Injection

Arbitrary command and code execution results in the vulnerabilities identified as Remote
Code Execution and Remote Command Execution. Though these types of vulnerabilities

are significantly less common in WordPress than in other platforms, they are still critical

issues.

Just like with arbitrary file upload vulnerabilities, PHP functions that can run commands
and execute code leads to the ability to run arbitrary scripts. These can be used to
perform endless actions on a WordPress site’s server. If an attacker has access to run
commands directly on a server then they can do things like create new files to add
malicious code to a site, traverse to other directories and potentially infect other sites
hosted in the same account, escalate privileges on the server if other operating system
level vulnerabilities exist, and more.

43 WORDFENCE.COM

Command Injection flaws are classified by MITRE as “CWE-78: Improper
Neutralization of Special Elements used in an OS Command (‘0S Command
Injection’)””® which means that the software has a flaw that allows command
injection as a result of improperly sanitizing inputs.

Finding Remote Command/Code Injection Weaknesses

In order to prevent the introduction of remote command execution vulnerabilities, avoid
the use of the following functions when user-supplied input will be passed to the function:

exec () *% A command execution function that has no output.

shell exec ()" Acommand execution function that has output.

proc open () % Acommand execution function that opens file pointers for input
and output.

system () **: Acommand execution function that will return output.

passthru () ?*: Acommand execution function that will return raw output.

eval () *°: A code execution function that will run strings of PHP as code.

When conducting secure code reviews, look for the above functions and validate that
there is no user-supplied input that could be used to execute remote commands on the
server. If user input can be supplied, conduct further analysis to determine the extent of
which commands or code can be executed. The presence of any of the above functions
along with user-supplied input may mean that a remote code execution or command
execution vulnerability is present.

How can this be corrected?

The solution for this is simple. Don't use PHP command functions with user-supplied
inputs unless absolutely necessary. If any user-supplied input needs to be passed to the
function, then validate that the user-supplied input is completely sanitized and filtered so
that arbitrary commands and code cannot be supplied.

79 https://cwe.mitre.org/data/definitions/78 html

80 https://www.php.net/manual/en/function.exec.ph

8 https://www.php.net/manual/en/function.shell-exec

2 https://www.php.net/manual/en/function.proc-open

8 https://www.php.net/manual/en/function.system
8 https://www.php.net/manual/en/function.passthru
8 https://www.php.net/manual/en/function.eval

44 WORDFENCE.COM

https://www.php.net/manual/en/function.eval
https://www.php.net/manual/en/function.passthru
https://www.php.net/manual/en/function.system
https://www.php.net/manual/en/function.proc-open
https://www.php.net/manual/en/function.shell-exec
https://www.php.net/manual/en/function.exec.php
https://cwe.mitre.org/data/definitions/78.html

In some cases plugins and themes add the ability to implement custom PHP code on a
site. If the functionality of the plugin or theme’s sole purpose is to add custom PHP code
to a WordPress site and no filtering can be applied, validate that the appropriate access
controls and Cross-Site Request Forgery protections are in place to prevent unauthorized
access from lower-privileged users.

45 WORDFENCE.COM

Example from Social Warfare Plugin <= 3.5.2 Unauthenticated Remote
Command Execution®

The following is an example of how a PHP code execution function, eval (), was
improperly used by allowing user-supplied input from a remote hosted file. This plugin
had an admin post action hook, tied to a function that would retrieve the options for a
site. If the swp_url parameter was supplied with a path to a file, then this function would
retrieve the contents of that file and anything in the <pre></pre> tags would be run
through the eval () function making it possible for users to supplied arbitrary PHP code
like phpinfo () creating a remote code execution vulnerability.

Insecure Code Prior to Patch

== SWP_Utility::debug(
(!is_admin()) {
wp_die(

= file_get_contents(

¢) {

wp_die(

= strpos(
1= 0) {
wp_die(

= str_replace(<pre>
= strpos(</pre>')
= substr(

This vulnerability was corrected by completely removing this functionality from the plugin,
so we have not provided an example of the secured and corrected code.

8https://www.wordfence.com/blog/2019/03/recent-social-warfare-vulnerability-allowed-remote-code-execution/

https://www.wordfence.com/blog/2019/03/recent-social-warfare-vulnerability-allowed-remote-code-execution/

IX. Sensitive Information Disclosure

Sensitive information can range from personally identifiable information to nonces that
lower-privileged individuals should not have access to. In many cases, access to sensitive
information can lead to improper access control vulnerabilities. However, it is important
that these types of weaknesses have their own category of discussion.

In the past, our team has found several instances where nonces intended for only
administrative or higher privileged access have been disclosed to lower-level users like
subscribers or those even without authentication. A nonce should be considered sensitive
information as the inadvertent disclosure of such can make it possible for lower-level
users to perform unauthorized actions when proper access controls are missing.

In addition to nonce disclosure, there are more classic examples of sensitive information
disclosure that should be looked for and protected against, including user information
disclosure, sensitive access keys disclosure, log disclosure, and more.

Sensitive information disclosure flaws are classified by MITRE as “CWE-200:
Exposure of Sensitive Information to an Unauthorized Actor.”® This could also be
identified by the OWASP’s Top Ten as A3:2017-Sensitive Data Exposure®.

Uncovering Sensitive Information Disclosure Vulnerabilities

When looking for sensitive information disclosure vulnerabilities, we highly recommend
looking for any functions that can add information to the source code of a page,
especially in the /wp-admin area, which can be accessed by any authenticated user. This
includes looking for the following hooks:

e admin footer®:Ahook that will add data or scripts to the footer of an
administrative page.

e admin head” :Ahook that will add data or scripts to the header of an
administrative page.
wp footer” : Ahook that will add data or scripts to the footer of any page.
wp_head’” : A hook that will add data or scripts to the header of any page.

87 https://cwe.mitre.org/data/definitions/200.html
Lhttps://owasp.org/www-project-top-ten/2017/A3_2017-Sensitive_Data_Exposure
8 https:/developer.wordpress.org/reference/hooks/admin_footer/

Y https://developer.wordpress.org/reference/hooks/admin_head/

1 https://developer.wordpress.org/reference/functions/wp_footer/

%2 https://developer.wordpress.org/reference/functions/wp_head/

47 WORDFENCE.COM

https://developer.wordpress.org/reference/functions/wp_head/
https://developer.wordpress.org/reference/functions/wp_footer/
https://developer.wordpress.org/reference/hooks/admin_head/
https://developer.wordpress.org/reference/hooks/admin_footer/
https://owasp.org/www-project-top-ten/2017/A3_2017-Sensitive_Data_Exposure
https://cwe.mitre.org/data/definitions/200.html

wp _enqueue script’’:Ahook that will add scripts to any page and enqueue it.
admin enqueue script’ :Ahook that will add scripts to any administrative
page and enqueue it.

e login enqueue script’”:A hook that will add scripts to the login page and
enqueue it.

When looking through these hooks, verify that the associated function does not contain
any sensitive information like full paths to a site, nonces not intended to be seen by
low-privilege users, personally identifiable information of other users, data from logs,
sensitive access keys, or any other information that may be deemed sensitive. If this data
is present, then the function should be validated to ensure that there is an appropriate
capability check in place so that the sensitive information is only disclosed to users with
the appropriate level of access.

In addition to looking for any hooks that can disclose sensitive information in the source
code of a page, we recommend looking for export functionalities typically hooked to
actions like wp_ajax,admin_init,and admin_action. When plugins or themes
export data they frequently contain some sort of information from the target site and this
information has the potential to be sensitive. Some examples include log file information,
which can be used to take over a site if verbose email logs can be exported, email
subscriber information, which can contain personally identifiable information about
individuals, and site information like a site’s full path, which can be used to exploit other
vulnerabilities. When export functionality is present in a plugin or theme that exports any
form of sensitive data, then it should be validated that the appropriate access controls are
in place to prevent unauthorized users from exporting any information.

Preventing Sensitive Information Disclosure

Due to the fact that sensitive information disclosure vulnerabilities are typically the result
of improper access control, these vulnerabilities can usually be remediated fairly easily by
just implementing a capability check on the function that contains sensitive information.
This can be done with the use of the current user can () function that checks for
the appropriate capability.

% https://developer.wordpress.org/reference/functions/wp_enqueue_script/
% https://developer.wordpress.org/reference/hooks/admin_engueue_scripts/
% https://developer.wordpress.org/reference/hooks/login_enqueue_scripts/

48 WORDFENCE.COM

https://developer.wordpress.org/reference/hooks/login_enqueue_scripts/
https://developer.wordpress.org/reference/hooks/admin_enqueue_scripts/
https://developer.wordpress.org/reference/functions/wp_enqueue_script/

Example from WPCentral Plugin <= 1.5.0 - Connection Key Disclosure
(CVE-2020-9043)°®

The following is an example of sensitive information disclosure from the WPCentral
plugin. This plugin had a flaw that displayed a site’s connection key in the source code of
the /wp-admin dashboard to any user that was authenticated to the site. The plugin
registered the admin footer hook tied to the wpc modal dialog function which
added information to the administrative footer, including the site’'s connection key. This
connection key could then be used to log in as the site’s administrator.

(is_plugin_active(
add_action(
add_action(
add_filter(
add action(

add_action(

add_action(

Insecure Code Prior to Patch

The following is the wpc_modal dialog function where the connection key is retrieved
from the database and added to the HTML that is displayed in the wp-admin footer. There
is no capability check on this function to validate that the user is an administrator who
should have access to the site’s connection key.

<div id="wpc_connection_key_dialog" style="...">
<p>Follow the steps here to connect your website to wpcentral dashboard:</p>

Copy the connection key below
Log into your wpcentral account
Click on Add website to add your website to wpcentral.
Enter this website\'s URL and paste the Connection key given below.
You can also follow our guide for the same here.</1i>

<p style="...">Note: Contact wpCentral Team at support@wpcentral.co for any issues</p>

<div style="..."><p style="...">wpCentral Connection Key</p></div>
<div style="...">|.wpc_get_connection_key(). f</div>
</div>

(

https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-9043
https://www.wordfence.com/blog/2020/02/vulnerability-in-wpcentral-plugin-leads-to-privilege-escalation/

Secured and Corrected Code Sample

The following is how the developer corrected the flaw. The wpc_modal dialog function
was completely removed and replaced with the wpoc add connection 1link function
that performed an authorization check to validate that a user had the

activate plugins capability, which is provisioned to administrators only, prior to
displaying the scripts and data to the administrative dashboard.

(

(is_multisite() && is_network_admin()){

(!'current_user_can(

}

wp_enqueue_script(
wp_enqueue_script(
wp_enqueue_script(
wp_enqueuve_style(
wp_enqueue_style(

X. File Access/Usage Weaknesses

File access/usage weaknesses can make it possible for attackers to read or delete
arbitrary files on a server in addition to performing local or remote file inclusion in order to
trigger code execution. WordPress plugins and themes may include files for a variety of
use cases, such as using templates or loading settings pages in the dashboard. In
addition, several plugins and themes make it possible to read files for the purpose of
editing files or creating backups.

The insecure use of these capabilities can lead to remote file inclusion or local file
inclusion vulnerabilities in addition to directory traversal and arbitrary file modification,
reading, or deletion vulnerabilities. As such, it is incredibly important to ensure that these
vulnerabilities are not introduced into plugins and themes and that when they are, they are
detected rapidly to be remediated.

Accessing, Including, and Modifying Files Can Do a Lot of Harm

File access and inclusion vulnerabilities can be just as dangerous as many of the
vulnerabilities previously discussed. Including local and remote files can result in
vulnerabilities identified as local or remote file include if the function is not properly
secured. When a file containing PHP content can be included via PHP, then that file
becomes executable and an attacker can trigger code and include a webshell that will
allow them to remotely run commands on a server.

Local file inclusion vulnerabilities may require the attacker to upload a file to the
vulnerable site, however, the file is not required to have a .php extension to be executable
and can be any file type like a .jpg or .txt file that will easily pass any extension checking.
In addition, an attacker can send a request that updates a site’s log file with PHP, and then
include that log file to achieve remote code execution without ever requiring a file to be
uploaded.

Remote file include vulnerabilities are a little more severe as they don't require any file to
be uploaded to the server, but rather a remotely hosted file can be included and the code
will still execute, making it incredibly easy for an attacker to infect a victim.

When it comes to arbitrary file deletion vulnerabilities, an attacker can delete a
wp-config.php file on a target site which effectively transforms the site into a brand new
installation. Once that occurs an attacker can set up the site as if it was a new installation
and connect the site to their own database, setting new credentials for a new user
account. After the attacker has completed the setup process, they can then access the

51 WORDFENCE.COM

site’'s dashboard and upload malicious files that can be used to run commands on the
server and further infect the victim or any other sites hosted in the victim's account.

For arbitrary file-read vulnerabilities, which typically occur as a result of directory traversal
vulnerabilities, an attacker can potentially read sensitive files to steal information. Of
greatest concern would be inadvertent read access of the wp-config.php file that contains
a site’s unique salts and keys along with database credentials. If the database of a
vulnerable site is publicly accessible, an attacker could use the credentials to login and
perform a wide variety of malicious actions such as adding a new administrative user
account to further infect the site or stealing sensitive information from users’ accounts,
like their password hashes.

All of the vulnerabilities caused by accessing, including, or modifying files can cause
serious harm to a WordPress site..

Remote File Include flaws are classified by MITRE as “CWE-98: Improper Control of
Filename for Include/Require Statement in PHP Program ('PHP Remote File
Inclusion’).”’

Directory traversal flaws are classified by MITRE as “CWE-22: Improper Limitation of
a Pathname to a Restricted Directory (‘Path Traversal')."*

File Deletion and Modification flaws are classified by MITRE as “‘CWE-73: External
Control of File Name or Path.”*

Discovering File Access/Usage Weaknesses

When looking for these types of vulnerabilities, examine any instances where PHP
functions are used to include files, retrieve file contents, or delete files. Also look for PHP
functions that are being used to accept user-supplied inputs. If any of the following
functions accept user-supplied values, then there is the possibility that a file usage or
access weakness is present.

Local and Remote File Includes:

e include once()'”

e include()*®

97 https://cwe.mitre.org/data/definitions/98 html
% https://cwe.mitre.org/data/definitions/22 html
% https://cwe.mitre.org/data/definitions/73 html

190 hitps:/www.php.net/manual/en/function.include-once.ph

07 https://www.php.net/manual/en/function.include.php

52 WORDFENCE.COM

https://www.php.net/manual/en/function.include.php
https://www.php.net/manual/en/function.include-once.php
https://cwe.mitre.org/data/definitions/73.html
https://cwe.mitre.org/data/definitions/22.html
https://cwe.mitre.org/data/definitions/98.html

e require once()'”

e require()'”

Arbitrary File Reading:

e file get contents()'”

e fread()'”
106

e fopen()

Arbitrary File Deletion:

o wp delete file()'”

e unlink()?®®

Securely Performing File Operations

To securely perform file operations, user-supplied inputs should be limited and hard
coded paths to files should be used. The path to the WordPress uploads directory can be
obtained using the wp_upload dir () '% function, and it is recommended to use this as
the prefix when performing file operations on any file that is uploaded to the
/wp-content/uploads/ directory so that users cannot supply arbitrary paths to files.

In addition, the use of characters that can make it possible to perform a directory
traversal attack to read, modify, or include files should be sanitized out. This can be done
withthe sanitize file name () function which strips out a variety of special
characters that could aid in exploiting file access/include attacks.

192 htps://www.php.net/manual/en/function require-once.php

193 htps://www.php.net/manual/en/function.require.php

104 htps://www.php.net/manual/en/function file-get-contents

195 htps://www.php.net/manual/en/function fread

19 https://www.php.net/manual/en/function fopen

197 https://developer.wordpress.org/reference/functions/wp_delete file/
198 htps://www.php.net/manual/en/function.unlink

199 hitps://developer.wordpress.org/reference/functions/wp_upload dir/

53 WORDFENCE.COM

https://developer.wordpress.org/reference/functions/wp_upload_dir/
https://www.php.net/manual/en/function.unlink
https://developer.wordpress.org/reference/functions/wp_delete_file/
https://www.php.net/manual/en/function.fopen
https://www.php.net/manual/en/function.fread
https://www.php.net/manual/en/function.file-get-contents
https://www.php.net/manual/en/function.require.php
https://www.php.net/manual/en/function.require-once.php

Example from Quiz and Survey Master Plugin <= 7.0.0 - Arbitrary File
Deletion(CVE-2020-35951)'"°

The following is an example of an arbitrary file deletion vulnerability from the Quiz and
Survey Master Plugin. The plugin registered an AJAX action

wp_ajax _gsm remove file fd question hooked tothe
gsm_remove file fd question function intended to allow the deletion of any files
uploaded through a quiz or form from the plugin. This functionality was intended for both
authenticated and unauthenticated users which is why the plugin also registered a
nopriv AJAX hook.

add_action(

add_action(

Insecure Code Prior to Patch

Unfortunately, the gsm remove file fd question function was insecurely
implemented and allowed a user to supply a full pathto a fileas the file url and
performed no validation that the supplied file was one that was uploaded by the plugin's
upload functionality. This meant that any user could supply a full path to any file,
including the wp-config.php file, and delete the file through the wp delete file
function.

04
1) ? sanitize_text_field(
()
wp_delete_file(
[1=
[1=

json_encode(

json_encode(

NOhttps://www.wordfence.com/blog/2020/08/critical-vulnerabilities-patched-in-quiz-and-survey-master-plugin/

https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-35951
https://www.wordfence.com/blog/2020/08/critical-vulnerabilities-patched-in-quiz-and-survey-master-plugin/

Secured and Corrected Code Sample

This was corrected by implementing custom file names on all uploads to ensure they
contained the string gsmfileupload and required that this string be at the beginning
of the filename to ensure that only files previously uploaded from a quiz form could be
deleted.

(OF!
[1) ? sanitize_text_field(
= wp_upload_dir()
= [1
&& stristr() && file_exists(
= [115
= ->qsm_get_attachment_id_from_url()
wp_delete_file(. .)
wp_delete_attachment()
[1=
[1=_J(
json_encode ()]

json_encode(

XI. Additional Security Flaws

In addition to the most common coding flaws we see, there are several other
vulnerabilities that are less commonly encountered. However, these flaws still pose a
significant risk to WordPress sites. This section explores those vulnerabilities.

Arbitrary Options and user_meta Update Vulnerabilities

Arbitrary options update and arbitrary user_meta update vulnerabilities are typically the
result of improper access control on functions, in combination with a lack of filtering on
options being updated. These vulnerabilities are frequently used to escalate privileges on
sites with vulnerable plugins and themes.

Arbitrary options update vulnerabilities make it possible for attackers to update the site
option allowing user registration to be enabled and set the default role to administrator.
This allows attackers to register on vulnerable sites as an administrator. On the other
hand, arbitrary user_meta updates make it possible for an attacker with an account on a
vulnerable site to escalate their privileges by updating the wp capabilities meta key,
which controls a user’s role and capabilities, to the value of “administrator”. In both cases,
once an attacker has access to a site with administrative capabilities, they can
completely take over the site and cause significant harm.

When looking for arbitrary options update vulnerabilities, any instance where the
update option ()function is used where user input is supplied should be analyzed. If
that is found then it should be verified that the function validates and sanitizes the input
so that arbitrary options cannot be supplied. As a developer, ensure that options that can
be updated via plugin or theme functionality are consistent with the options available
within the code. Also ensure user input can not be supplied unless absolutely necessary.
For example, if the plugin or theme intends to update an option that the plugin or theme
introduces, then make sure that the update option () function can only update that
value.

When looking for arbitrary user_meta update vulnerabilities, any instance where

update user meta () is used alongside user-supplied input should be further
analyzed. If an instance of that function is found that accepts user-supplied input, then it
should be validated that arbitrary metadata cannot be supplied, and if it can, further
analysis should be done to see if there is an exploitable privilege escalation vulnerability.
As a developer, it should be ensured that the user metadata that can be updated via
functionality of plugins or themes is consistent with the user metadata in the code that
should be updated. For example, if the plugin or theme intends to update a custom

56 WORDFENCE.COM

user_meta field that the plugin or theme introduces, then make sure that the
update user meta () function can only update that value.

Open Redirection Vulnerabilities

Open redirection vulnerabilities are the result of improper validation of a redirect location.
This can result in site visitors and owners being redirected to external malicious sites that
can steal sensitive information from a victim's browser or further infect a computer. This
type of vulnerability is typically introduced in WordPress plugins and themes when the

wp redirect () function is used for redirection in conjunction with user-supplied values
that determine the redirect location. This flaw can easily be corrected by switching to
using the wp_safe redirect () function which will validate that the redirect occurs
locally. If the functionality of the plugin or theme requires a redirect to an externally
hosted site, then it is recommended to use a hardcoded URL that can not be modified by
a request.

57 WORDFENCE.COM

Conclusion

This document has explored some of the most common coding security issues the
Wordfence Threat Intelligence team finds when conducting secure code reviews on
plugins and themes. There are numerous ways that vulnerabilities can be introduced,
therefore, it is important to understand how they are introduced and what can be done to
prevent these security issues.

As outlined, a vast majority of critical security issues introduced in WordPress are a result
of insufficient access controls combined with additional weaknesses. An arbitrary options
update vulnerability becomes significantly more harmful if an unauthenticated user with
insufficient privileges is able to exploit it.

As a reminder, if you are a plugin or theme developer in the WordPress space, over 42% of
the internet relies on you to make good security choices when creating your plugin or
theme. As such, security is a critical part of your brand as well as the safety of the
WordPress community. We hope this white paper helps you to avoid common mistakes
when developing your plugin or theme, or with reviewing your plugin or theme once
development has concluded. Better yet, have a third party security minded developer or
security professional review the code to find any security flaws you might have missed.

We are all human, and you will likely introduce a security vulnerability in your software at
some point. If you make your best effort to avoid it, then you will have better trust from
your users and a more secure product in the end.

If you are a WordPress user, with little code development background, you can still get a
good idea about a plugin or theme's security by just looking for a few things here and
there, like sanitization on $_ POST variables, for example. If you notice several missing
capability checks or no CSRF protection on several endpoints, then you may want to
reconsider and investigate a different plugin or theme for your WordPress site.
Alternatively, you can reach out to a security researcher to conduct a more thorough
review and coordinate fixes with the developer.

If you are a security researcher, we hope that this guide will assist you in finding some of
the most common security related coding flaws in the WordPress ecosystem and allow
you to coordinate with developers on recommended fixes for these flaws.

Please note that there are other security flaws in code that we may not be outlined in this
document, this list just includes some of the most common and the most significant flaws
our team frequently sees.

58 WORDFENCE.COM

